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ABSTRACT

The estimation of the position and velocity of a target

moving in a two-dimensionalframe is studied in this paper.

The estimator is a Kalman filter which processes noisy bear-

ings of the target gathered by the tracker.

The case of maneuvering targets is examined and a'solu-

tion using a variable value of the system's 4oise covariance

matrix is studied.
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* I. INTRODUCTION

The problem discussed in this paper is that of esti-

mating the pesition and velocity in two dimensions of a

target 'by means of processing passively obtained bearing

measurements.

A single moving nbserver (tra-ker) monitors noisy sonar
bearings from a rad.iating acoustic source (target). The

j geometric configurat:.on is depicted in Figure 1.1.

The problem contains nonlinearities so the conventional
linear analysis is not possible. Also. as it will be shown in

chapter IV the' dynamic process remains unobservable prior to
tracker maneuver. That requirement of observer maneuvering
distinguishes this problem from the more usual target motion

analysis (TMA) problem.

In chapter II the basic concept of the Kalman filter is

described. Chapter III describes the non-linear case
(Extended Kalman filter) in which category the bearings only

tracking problem belongs.
In chapters IV and V the problem oa bearings only

tracking with nonmaneuvering and maneuve ing targets' is
discussed. Some possible solutions from the literature are

"referenced, and the case of solving the )roblem through a
specific .apprcach, i.e by using a varia le value of the

system's noise covariance matrix "Q" is tes:ed.
Chapter V! contains the results of the computer simula-

"tions on' the subject and chapter VII contains conclusions

"and possible topics for further investigati n.

' 9
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II. KALMAN FILTEILING BASICS

A. HISTORY

In 1960,- R.E. Kalman provided a new way of formulating

the least squares filtering problem using state-space
methods [Ref. 1]. Until that time the Wiener solution of

the optimal filter problem was applied , which was using the

concept of the "weighting function". In effect the weighting

function tells how the past values of the input should be

weighted in order to determine the present value" of the

output, that is the optimal estimate. But the Wiener solu-

tion did not lend itself very well to the corresponding

discrete-data problem nor was it easily extended to more

complicated problems [Ref. 2].

The two main features of the Kalman formulation and

S. solution of the problem are:

Vector modeling of the random' processes under
consideration.

Recursive processing of the noisy measurements

(input data). The key element in any recursive procedure is

the use of the results of the previous step to aid in
obtaining the desired result for the current step. This is

the main feature 'of the Kalman filtering 'and the one that

clearly distinguishes' it from the weighting function
approach,' which requires arithmetic operations on all the

past data.
The Kalman filtering technique- has become very popular

in target tracking applications for che previous reasons
plus the following:

11



At a given time t, the filter generates an unbi-
ased zstimate of the state vector,which means that the

expected value of the' estimate is the value of the state

vector at time t.

The estimate is a minimum -jariance estimate

meaning that it has the property that its error covariance

is less than or equal to that of arty other linear unbiased
estimate.

The filtcr is linear and simplifies the calcula-

tions (Ref. 3].

B. THE DISCRETE KALMAN FILTER

Assume that the random process to be estimated cP.n be

modeled in the form:

x(k.1)= 0(k)x(k) + fw(k) +Au(k) (2.1)

and the observation or measurement of the process is assumed

to occur at discrete points in time in accordance with the

relationship:

z(k) H(k)x(k) + n(k) (2.2)

where:'

x(k) = (nxl) ; is the process state at time t(k)

Ofk) (nxn) ; is the matrix relating x(k) to

x(k.l) in the absence of forcing function.

w(k) ; is the random forcing input at time t(k)
considered to be an uncorrelated sequence with zero mean and
known variance.

12



"(k) = (nxp) ; is the matrix relating the random

forcing inputs to the state at time t(k). 1

* u(k) is the deterministic forcing input at time

t(k).

A(k) = (nxp) ; is the matrix relating the determin-

-istic inputs to the state at time t(t).

. z(k) (mxl) ; is the measurement vector at time
t(k)

H(k) = (mxn) ; is the matrix which gives the noise-

less connectiun between the state vector and the measurement

equation at time t,(k).

. n(k) = (mxl) ; is the measurement noise error which
is assumed to be a white sequence with known covariance

structure and uncorrelated with the w(k) sequence.

The corresponding covariance matrices are given by:.

OL V

E[ww,'] (2.3)

E[nn = tj ' (2.4)

'-E[wLn] 0 for all k and i' (2.5)

*-.

.4 2 (') denotes matrix transposition.

"13
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It is assumed that we have available an initial estimate

of the process at time t(k), which is based on the knowledge

about the process prior to time t(k). This prior estimate
will be denoted as %(k/k-l) where the "hat" denotes esti-

mate, and the (k/k-i) subscript means that this is our esti-
mate prior to processing the measurement at time t(k).

With the-assumption-of the prior estimate ^(k/k-1),; we
"now seek to use the measurement z(k) to improve the esti-
mate. To do that we choose a linear blending of the received

noisy measurement and the prior, estimate in accordance with

the equation:

x(k/k) = •(k/k-l)+G(k)[z(k)-H(k)x(k/k-l)] (2.6)

where *(k/k) is the update estimate, x(k/k-1) is given by:

x(k/k-1) =O(k)X'(k-l/k-l) (2.7)

and the G(k) is the blending factor. G(k) is going to be

determined later. At this time the problem is to find a
particular value of G(k) that yields an update estimate that

is optimal in some sense. The minimum Mean - Square error
is the required performance criterion for that "optimiza-

tion"., To do that we need to define the term "error covari-
"ance matrix" P(k), associated with the update (a posteriori)
estimate, which is a matrix representing the' covariance of
the difference between- the true 'state vector x(k) and the

. estimated •(k).

A'(k) = E [(x(k)-x(k/k-l))(x(k)-2(k/k-l))'] (2.8)

The optimization can be done by various mathematical ways as
treated in (Ref. 4] CRef. 2] .and [Ref. 5). The'mathematical

derivation which is omitted here shows thaz if

14.
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G(k)=P(k/k-l)H'(k)[H(k)P(k/k-l)H'(k) +R(k)] (2.9)

then this is the G(k) that minimizes the mean square estima-
"tion error, and it is called the "Kalman gain" [Ref. 2].

Next the covariance matrix associated with the optimal
.' estimate may be computed and is given by:'

" P(k/k) = [I - G(k)H(k)]P(k/k-1) (2.10)

Now the updated estimate x(k/k) can be easily projected.
ahead via the transition matrix by the equation:

x,-./k =O k ^k/k) (2.11)

ignoring the contribution of w(k) because it has zero mean
and also it is uncorrelated with the previous W's.

Also,the equation

P(k+l/k) =q(k)P(k/k4'(k)+Q(k) (2.12)

closes the loop and now, having the needed quantities for
the next moment with the next measurement we can start again
as in the previous steps.

Equations (2.6), (2,9), (2,10), (2,11), and (2,12.) thus
comprise the Kalman filter recursive equation set.

In Figure 2.1 the Kalman filter loop is indicated.

1. A Simple Example

Assume that a ststionary tracker has the ability to
. obtain range measurements in both X and Y directions of a

* target moving as in Figure 2.2.

4 2(1) is the identity matrix.

15.



'; ¢~~~ompute msas e ln so--- "eG(k)-P(k/k- I)HO~ )'()(T'lek~~)

Project aneed: ugo0ate estiste with
Y(k i/k )Y.0 (k/k) and memssuemnt z(k):

"")-0 ,k()kP)(k/k )0' (k).Q v(kkj)-x(k-/k- -• .G(k )[Z(k)-

";• compute error ¢ovarlance for upfted
-f ~estimate: P(klk)-[j-GlklH(k)1P(k/k-1)

3F ure 2. 1 The Kalman Filter Loop.

Let the tar et be movingr with a tangential velocity of

* 1,660 m/min s that it covers the arc of 90e in 10 minutes.

The tracker akes its -measurements every 1 min. It is

desired co es izmate. the stats vc'.-tor of the target defi ned

Sas *X,Vx,Y, a d Vy , i.e., range and velocity in X and Y

* directions. iven are: an initial estimate *(k/k-l) and its

error covariance matrix P(k/k-1). Let them b.-:

16
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-REALTARIP RAETR I
a 2000 40'00 6000 6000 16000

- X (RANGE)

Figure 2.2 Tracker-Target Configuration in Example.
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* .m -. . a • .• . . .. w-a... * .. tn.W. W ~~~�......, -N • • •.w • ` ; -` `.2 `m- -- • . .St• . .-.. % •% -. ,-

1000;

::(k/k-1.) o .(2.13)

and

1000 0 0 0

0 1000 0 0
,P(k/k- 1) (2.14)

o 0 1000 0

0 o 0 1000

Theio we can calculate the Kalman filter gain G(k) as in

equation (2.9) where:,.

H(k) = constant = (2.15)0 0 ,1 0

and R(k) has the value:

R(k),= constant = (2.16.)

Next, given the measurement, the updated estimate is calcu-
lated using equation (2.6) where:

z(k) = (2.17)

We can see here that the updated estimate '(k/k) depends on

the previc ; *(k-l/k-l) propa ted for the instant (k) i.e.,

18
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* X(k/k-1), and another portion equal to G(k)[z(k)-H(k)x(k)].

That second portion depends on the G(k) and on how much the

* estimated and the received measurements differ.
The updated error covariance matrix P(k/k) is then

computed using equation (2.10). The updated error covariance
P(k/k) is going to be less than the previous P(k/k-1) since

* the filter processed an observation and thus the uncertainty

about the estimate is less. The te-m (I-G(k)H(k)] is always

less than unity if G(k) is not zero. That means that if, we
. used the last observation (i.e., G(k) not zero) then the

term in thv. brackets is less than unity and P(k) becomes

less than P(k/k-1).
Now having'x(k/k) and P(k/k) we must propagate them

for the next instant when the next measurement will be taken

in order tc be able to compare it with the' real one through

the new measurement. So we project ahead our estimate by

.*the equation (2.11) where:

I 0 0

4(k) 0 1 0 ' (2.18)0 0 0 1

"and the error covariance matrix by equation (2.12) with Q(k)

such that:

"QUO f(k)E[w(k)w'(k)]r'(k) (2.19)

S • where:

.p1
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(k)0 oJ (2.20)

and w(k) is the random forcing input at time t(k) which is

to be formulated as a white noise with known variance.

Finally Q(k) is given by:

* .T or 0
4 a.

2
T 0 0

.WOk) (74.21)
I T_" T

00 4

Lo 0 f T

I, j

"and it counts for the uncertainty introduced by t-.e fact

that we do not know if the target during the next coming

time interval will maneuver or not. A big value of w(k)
*• means, that the target is very likely during the propagation

interval to maneuver. In this case the Kalman gain will also
S•.be large and the filter will weight the observation mote

P than the propagated state. On the opposite case if w(k) is
• -zero the filter assumes that the target did not maneuver

"ditring that interval so it weights more the last estimate

* than the measurement. In the above case it is also assumed

i that the target acceleration in X direction is uncorrelated
to the 3cceleration in Y direction for simplicity.-

Having the propagated values 'of X(k.I/k) and
P(k÷l/k) we can start over again from the initial step.

The above algorithm was simulated in the computer.
The interesting result obtained is that.for the case that
the target maneuvers the choice of w(k) is very important.

If it is small or zero the filter does not include any extra

20



I

"uncertainty due to possible target maneuver. So at any

moment it gives more weight to the last propagated estima-

l tion and less to the received measurement. Thus the tracking
accuracy is not good compared with that in which it includes

-" uncertainty as can be seen in the result's shown in Figures

2.3, 2.4, 2,5, 2.6, ani 2.7.

2
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III. NONLINEAR ESTIMATION

A. INTRODUCTION

The majority of physical phenomena are nonlinear in
nature. So as a result ,usually ,the state and/or measure-

ment equations are nonlinear. Since the basic Kalman filter

theory deals with linear cases, it is necessary to find a
"method" to use it in nonlinear estimation problems.

. There are two ways of solving that problem: [Ref. 4].
1. By deriving an optimal filter for the nonlinear

"problem or

"2. By linearizing (approximating) the problem and
applying the linear filter theory.

The first method is hard to follow and will involve

complicated mathematical computations. On the other hand the

second method is easier and the more usual. For the
reasons above the second method will be followed in this and

S".the following chapters.

B. ANALYSIS

In the following analysis it is assumed that both the

state and the measurement equations are nonlinear although

*this is not always the case.

Assume that the random process to be estimated can be
,modeled'by:

x(k+l) = a[x(k),u(k),k] ÷w(k) (3.1)

with the measurement equation:'

"z(k) = c[x(k)] * n(k) (3.2')

27
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It is necessary to have available a nominal trajectory

"x (k), k=0,1,2,.... about which the linearization will be

performed. The vector function a[x(k),u(k),k] is expanded in

. Taylor series about the nominal trajectory x (k). Then the

- linearized state equaticns can be written:

Sx(lk+1)=a[x1*1(k),u(k),k]+ ýa [x(k)-x (k)]+w(k) (343).-

[x (k),u(k),k]

" If A(k) is defined' to be .the first partial derivative of the

. nonlinear function a[x (k),u(k),k], with respect to the

"- state vector x(k), i.e.,

A(k) (.3.4)

[O) It~c), a 60,

/ Then, the ijth entry of matrix A is given by:

"(A) - -- -- (3.5)

£3 ~ ~~ {Ck),%LC)k

Also ,the vector function a[x€' (k),u(k),k] is a'known
function of k. Thus the linearized state equations can be

written as:

"x(k~l)=A(k)x(k)+a[xC*)(k),u(k),k] (3.6) -

'-. - A(k)x"O,(k)÷w(k)

The accuracy of this approximation depends on how close
the nominal tra.lectory to the actual one' was selected.

Let us now consIder the measurement equation. We have:

z(k).- c(x(k)]÷n(k) (3.7)

28
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Again we can expand the nonlinear vector function c about
the nominal trajectory x (k) with the result:

,: z(k)=c[x"°) (k)]+÷de [x(k)-xl*)(k)]+n(k) (3.8)

SC()k)

Defining

H(k. (3.9)

X

we 'can write:

z(k):H(k)x(k)+cfx(*)(k)] -H(k)x( (k)+n(k) (3.10)

Again as in the linearized state equation, the two terms in
"" the middle of the equation (3.10) are known quantities and
. they can be handled as if they were a time varying but known,
" measurement bias. For simplification if we will define'

"- u'(k) a[x(x)(k),u(k.),k] - A(k) x')(k) (3.11)

and

z'( M z(k)-c x") (k)] .H(k)x' (k) z(k)-$(k) (3.12)

where:

"(') in this case means "'prim"'

29
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"(k) c[x •(k) - H(k)x('(k)] (3.13)

we can rewrite equations (3.6) and (3.7) as:

ax(k.1) = A(k)x(k) + u(k) w W(k) (3.14)

and

"z(k) = H(k)x(k) + #(k) + n(k) (3.15)

Then starting with these linearized equations, the appro-

priate Kalman filter equations are:

the gain equation:
_oL

G(k) = P(kfk-1)H'(k)[H(k)P(k/k-1)H'(k)+R(k)] (3.16)

the covariance of estimation error equations:

P(k/K-1) A(k-l)P(k-1/k-l)A'(k-l)eQ(k-1) (3.17)

". P(k/k) = [I-G(k)H(k)] P(k/k-l) (3.18)

the filter update equation:

-(k/k) = X(k/k-l)+G(k)(z(k)-c(x(k/k-1))] (3.19)

-q

and the prediction equation:

";.x(k~l/k) = a[x(k/k),-u(k),k]' (3.20)

Notice that in equations (3.19) and (3.20) the nonlineai
state and measurement relationships are used. An alternative

is to use the linearized relationships in which case we

have:
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""(k/k) =(k/k-1)+G(k)[z(k)-H(k)•(k/k-1)] (3.21)

and

x(k~l/k) A(k)x(k/k) + u(k) (3.22)

One question to be answered now is how to determine the

"nominal" trajectory used before. One way is to use an

approximate trajectory that is known in advance. This

trajectory may be available from known data, or may have

been computed by solving the state equations:

x (k+l) a[x(xI(k),u(k),k] (3.23)

with the initial condition x(0) = E[x(O)]. Unfortunately,

if the uncertainty in x(O) is large the solution of equation

(3.23) may be "too far" from x(k), the linerization error

too big and the whole method inaccurate.

C. THE EXTENDED KALMAN FILTER

Another possibility is to use the estimates produced by
the filter as the nominal trajectory about which the linear-

ization is performed. The estimator equations are again
* given by equations (3.21) and (3.22). The matrices A(k) and

H(k) must be used to' generate G(k) so that it is available'

to process z(k) when it is available. Thus the best informa-
"tion we have when H(k) must be evaluated is x(k/k-1); whenLo.
A(k) is to be evaluated, however, •(k/k) is available.

S • H~nce:
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"-" ((k) " (3.24)

and

U(k) (3.25)

, The H(k) andIA(k) matrices must be computed on-line

and not in advance since they depend on the last estimate.
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i IV. BEARINGS ONLY TARGET MOTION ANALYSIS -NONMANEUVERING

TARGET

A. PROBLEM DEF:NITION

The problem considered here ir that of estimating the
position and velocity of a target, in two dimensions, by

processing passively obtained bearing measurements.

The main application area is the Antisubmarine Warfare
area where either a surface ship tries to locate a submarine

through its cavitation noise or sonar transmissions, or vice

versa.

In the following discussion we will consider a moving
observer (own ship) that monitors noisy sonar bearings to an

acoustic source (target), and processes these measurements
to obtain estimates of target position and velbcity.The

" geometric configuration is shown in Figure 1.1.

B. FORMULATIONS OF THE PROBLEM

*.As it was mentioned earlier the problem contains nonli-

nearities, and the linear Kalman filter is not applicable.
Depending on the selection of the working coordinate system
Ci tie nonlinear term may be either the stato equation or the

measurement equation. Even models with mixed elements, from

different coordinate systems have been used. Following are

the xost conmonly used formulations of the problem:

1. Modified Polar Coordinates

"In the modified polar (MP) coordinates the state

vector is comprised of the following components:

Bearing

Bearing rate

,. Range rate divided by range

33
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The reciprocal of range.
"In this case the measurement equation is linear and the

state equation nonlinear. The nonlinearities exhibited by

the state equations are considerably more complicated than

those exhibited by a formulation where the measurement equa-

tion is the nonlinear. Consequently the computational load

for this formulation is increased. Details about the modi-

- fied polar coordinates formulation can be found in [Ref. 6].

2. Mixed Coordinates

In this case as in the previous one the measurement

"equation is the linear one and the state equation non

linear. The state vector consists of:

"Bearing
* Range

. Velocity component in x-direction

• Velocity component in y-direction

Again in this formulation there is the same complexity in

linearizing the state equation as well as computational
"load. Analysis of the mixed-coordinate formulation can be

found in [Ref. 7].

"3. Pseudo-Linear Formulation

"This formulation involves replacing, of the measured
bearings with pseudo-linear measurement, residuals, to
decouple the covariance computations from the estimated

Ssolution. The attractive feature of this method is that it
permits a solution to the problem 'via linear estimation

techniques. This formulation is similar to the Cartesian
"formulation which will be discussed in the next subsection.
How does it differ from the Cartesian formulation can be

"found in appendix D. More details on this formulation can

"be found in [Ref. 8).
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4. Cartesian Coordinates Formulation

This is the traditional way of formulating the

problem. The state vector consists of:

1. Range in x-direction

2. Velocity component in x-direction

3. Range in y-direction

4. Velocity component in y-direction..
The state equation is linear and the measurement equation is

now the nonlinear part. However the exhibited nonlinearity
Sis easily circumvented without complicated or lengthy compu-

tations as it will be shown in the next section.

Finally the cartesian coordinate formulation will be

a%.apted in the following discusion mainly because of its

simplicity.

C. DESCRIPTION OF THE FILTER IN CARTESIAN COORDINATES

1. Derivation of the State Equations

If we will consider the geometric configuration of

Figure 1 and with the restriction of target and tracker

being in the same horizontal pla.e, the Cartesian formula-
tion state vector may contain relati e ranges and relative

velocities in X and Y directions. The ctate vector that will

be followed in this analysis is:

r x,(t) x(t)

x3 (t) Y(t)

x ,.•(t) v(t)

with:
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x(t) xL(t)-xo(t) (4.2)
vA (t) vx#. (t)-vXO (t)
y(t) yt (t)-yo (t)
v (t) v- (t)-v1 (t),

where x,(t),y,(t),v,, (t),v~t (t) are the target -absolute

components of position and velocity in X and Y directions,

aand xc(t),y, (t),vM. (t), and vo (t) are the tracker absolute

components of position and velocity. The linear differen-

tial equations of motion of the model are given by:

0

X2 (t) ax(t)1  (4.3)
x;(t)j xa(t)

x4(t) [a,,(t)J

with:

a,[aj a. (t)-aNO t. I (.4

where a;(t) and ay(t) are the relative accelerations in both

directions, and a,, (t),,a,, (t),a,* (t), rnd ay. (t). are the

corresponding absolute accelerations of target and tracker

in both directions correspondingly.

The solutions of the differential equations above in

matrix notation give:

x(t) = A(t,tO)x(tO) 4 u(t,tO) (4.5)
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with:

1 (t-tO) 0 0
0 1 0 0 "

S o 0 0 1 ( 4.6 )

0 0 0 1

and:

u0 (t,tO) J-)ax (Q)d)

U2(t'tO) [a. (J)d7

I4(47

OLt,')u3 (t, to) J-r( t-)ay€ (ý)d; ( .

u4 (t'tO) jay(Ad)

and (to) denotes any arbitrary fixed value of tira.

Although (4.5) is valid for unconstrained vehicle

motion, solution requirements necessitate that the, bearings-

only target motion analysis be formulated under the restric-

tive assumption of constant target velocity., [Ref. 9). In

this case ax(t) and ayt(t) become zero and u(t,tO) reduces

to a deterministic input vector which depends only upon the

tracker's acceleration (maneuvers). So

u(t,tO) = -u*(t,tO) (4.8)

where:
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U0o (t,to) J.t-•)a (•)d). (4.9)

uea (t,tO) 6 (1)d

IL
Lbu., (t ,to) Jat- )ad(•

2. Derivation of the Measurement Equation

The measurement process is 'described by a scalar

time varying equation of the form:

P(t) h(x(t)] n(t) (4.10)

where

h[x(t)]= arctan x$(t)/xj(t) (4.11)

and 0(t) represents the measured target bearing corrupted

by additive measurement noise n(t). It is assumed that n(t)
is a white noise with zero mean and known variance d2

i e.,

Ein(t)]= 0 (4.12)

anda

E[n(t)n(t*.)U] (4.13)

D. THE DISCRETE TIME MODEL

The previously defined model in discrete form ls

described by:
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x(k+l) A(k)x(k) - u(k) (4.14)

and

(k)= h[x(k)] + n(k) (4.15)

where:

Xk) is the (4xl) state vector consisted from rela-

tive range and velocity of the target in X and Y directions.

A(k) is the (4x4) state transition matrix which is

constant and given by:

"I 0
1 T 0 0

1 0 0 (4.16)
0 0. 1 T

0 0 0 1

u(k) is the (4xl) vector of deterministic inputs

due to tracker,'s movement and given by Equation (4.9).

a(k) is the scalar noisy bearing measurement taken
at time t(k).

n(k) *is the scalar additive measurement noise at

time't(k).

Equation (4.14) assumes that the target moves with zero

acceleration, (non maneuvering). Also it is assumed that the

additive meastirement noise n(k) has zero mean and a known

variance Ws(k). Finally an initial estimate of the state

vector and, its error covariance matrix is presumed to be

given.
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The extended Kalman filter technique is applied to the

problem and yields:,

X(0/0) is the initial estimate of the state vector

which'is considered to be given.

"(0/0) is the initial estimate error covariance

matrix which is also considered to be given.

x(k/k-1) = A(k)x(k-l/k-l)-w(k) (4.17)

is the projection ahead of the estimated state vector.

P(kik-1) = A(k)P(k-1/k-1)A'(k) + Q(k) (4.i8)

is the projection of the error covariance matrix and Q(k) is
the mc7ieuver excitation covariance matrix (assumed zero if

the target does not maneuver).

ii(k) =----- (4.19)

1x=4(k/k-1)

is a (1x4) matrix given by:

H(k)= [x 5 /(x?,c+x),0,-x 4 /('+x,'),0] (4.20)

x=X(k/k-1)

Gfk)=Pqk/k-1)H'(k)[H(k)P(k/k-1)H'(k)÷•i(k)]" (4.21)

is the gain equation

AA•X(k/k) x(k/k-1)+G(k)[4(k)-hý(k/k-1)] (4.22)

is the, update equation and
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P(k/k) = [I-G(k)H(k)JP(k/k-l) (4.23)

is the error covariance update equation.

The above algorithm was formulated in computer simula-
tion program as in Appendix B and tested for the situations
shown in Figure 4.1 and Figure 4.2.

In the first case (Figure 4.1),the target was moving
from east to, west on a constant course and speed of 20
m m/sec, while the tracker was maneuvering following a sinuso-
dial track with main course from east to west also, and a
velocity of 10 m/sec in x-direction. The target had a rela-

"- tive velocity of 10 m/sec with respect the tracker in the
X-axis and 0 m/sec in the Y-axis.

In the second case (Figure 4.2), the target was moving
as the first case but the tracker was following a circular
path of radius 2000 m with a. turning rate of 21/sec.

The measurement error was taken as zero mean and 0.1
.- covariance and the measurement interval 1 sec. The behavior

of the filter is displayed in the following Figures and is
"* considered to be satisfactory.
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V. MANEUVERING TARGET

Up to this time we made the assumption that the target

does not maneuver. However in real world applications this

is not the usual case and hence the assumption is unreason-

able,. Specifically, in the main application area of the

bearings-only tracking, i.e., in the A.S.W scene, it is

expected that the target will not keep constant velocity but

instead it will command some kind of zig-sag during the

normal open sea transit and strong maneuvering or, evasion

after detection of a potential threat. It is evident thus

that there is a need to accommodate the maneuvering case.

A. POSSIBLE APPROACHES

There are various approaches relative to the problem in
general. Some found in the literature are following:

1. Variable Dimension Filter

In this case, the filter operates in its normal mode

in the absence of any maneuvers. A detection scheme is used
to determine that a maneuver is indeed occuring., Once a

maneuver is detected, a different state model is used. The

extent of the maneuver as detected is then used to yield an

estimate for the extra state, components. ' The tracking is

then continued with the augmented state model until it will

be reverted to the normal model by another decision. The two

models are a constant velocity and a constant acceleration

model for the maneuvering case. Details on the analysis of

that method can be found in [Ref. 10].
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2. Expanded Number of States

In this case the model includes the acceleration

component in it. This method. ha.' the disadvantage that if

the target does not have acceiero:.:n, using a third order

model increases the estimation errors for both position and

velocity ERef. 10]. Also,the computational load increases
drastically by augmenting the model by one term.

3. Modeling Target Acceleration as Random Process of

Known Form

This method is based on the fact that the target
acceleration and thus the target maneuver, is correlated in

time; i.e., if the target is accelerating at time t, it is

likely to be accelerating at time t+&tau for sufficiently
small A. ,Atypical representative model of the correla-

tion function r( ) associated with the target acceleration

is given by:

r(t) E [a(t)a(t+t)] = C'e azO (5.1)

where (d2) is the variance of the target acceleration and
(a) is the reciprocal of the maneuver time constant. The

maneuver excitation covariance matrix Q(k) then depends on
the correlation function r(e),which also depends on the type

of the target.
The above formulation includes the acceleration term

in the state vector. So the performance of the filter is

degraded by the computational overhead. The quality of the

estimate is also degraded when the target is moving with,

constant velocity.
Analysis of the above method can be found at

[Ref. 11].
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4. Use Variable Maneuver Excitation Error Covariance

Matrix

The filter is modeled as a second order and it does

not include acceleration term in it. The idea is [Ref. 12].

to use a set of different values for the forcing input

covariance Q(k). The filter monitors the innovation error

in the equation:

x(k/k) = X(k/k-1) + G(k)[#(k) - h(•(k k-1))] (5.2)

i.e., the term [#(k)-h(4(k/k-l))J in every iteration. If

that error hecomes larger than a predetermined threshold,

that means that the received bearing measurement does not

agree with that the filter generated and was supposed to

receive. Correspondingly, the estimated vector does not

agree with-the actual. So the filter assumes that-the target

made a maneuver. Depending on the size of the innovation

error, a value for the excitation covariance matrix Q(k) is

applied to the error covariance propagation equation:

P(k/k-l) = A(k)P(k/k-l)A'(k) + Q(k) (5.3)

The effect of the above is to increase the uncertainty of

the filter which consequently causes An increase of the gain

G(k). The bigger the G(k) the more the filter "believes"

the measurements rather than, the previous estimates.

So the filter is "partially" reinitialized. By

partially is meant that the new initial estimates of the

Itate vector and specifically the range terms are very close

to the real ones estimated Just before the maneuver. Thus

the filter has good conditions to start over and estimate

th& new state after the maneuver.
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B. BEARINGS-ONLY TRACKING WITH MANEUVERING TARGET.

From the previously mentioned methods of dealing with
maneuvering targets, we are going to develop the last one
i.e., that of using a variable maneuver excitation error
covariance matrix Q(k).

This method uses a four-state model, so it is faster
than the others using a six-state models and is the simplest
of all. Actually only a few extra lines of program are
added to that of a nonmaneuvering target.

1. Determination of the Q(k) Matrix

If we will suppose that the target made a maneuver,
(acceleration (a)) during the state propagation time from
(k) to (k+l), in one direction say X, then the error intro-
duced to our propagated estimate in the range term will be
(l/2)aT' and the error introduced in the velocity term will
be aT. Combining that fact in both direction and with the
assumption that an acceleration in X is uncorrelated to an
acceleration in Y the resulting Q(k) is given by:

Q(k) f'(k)E[w(k)w'(k)]f '(k) (5.4)

"where:

a..

1(k)s (5.5)

L0
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2. Simulation Results for Cases 3 and 4 with w=l,d'=O.1

The above method was modeled and simulated in the
computer. Two geometric configurations of target and
tracker as shown in Figures (5.1) and (5.2) were tested.'
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In the case 3 the target was following a steady course from

east to west and a constant speed of 20 m/sec. At the 700th

second it changed course to the right and speed components

to 12 a/sec in X and -10 m/sec in Y direction. After

another 700 seconds it changed course again that time from
west to east and resumed a speed of 20 m/sec. The tracker

was moving as in case 1 of the nonmaneuvering target. The

intervals displayed in the Figures (5.1) and (5.2) corre-

spond to time intervals of 100 seconds.
In the case 4 the target was following the same ;.:

track as in case 3 but that time the tracker was maneuvering

as in case 2.

In the 'following simulations the measurement error

was supposed to have zero mean and 0.1 variance. The meas-

urement interval, was again taken as 1 sec which is also

considered as reasonable for a real application.The (W) was

taken equal to 1.0.
The simulation program (Appendix C) for the above

conditions gave the results shown in the following Figures

5.3 to 5.16. In both cases the filter detected the maneuver
and very rapidly after approximately 300 seconds estimated

the new target parameters. The fluctuations of the errors

due to the target maneuver are smaller than those during the

first initialization of the problem. This can be explained

by the fact that after the target maneuver detection the

"filter had an "accurate" reinitialization state from the

previous tracking.
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3. Filter Behavior Under Different Values of w and 6"*

In order to investigate the behavior of the filter

for more extreme conditions, simulations where conducted

with various values of measurement error variance (d 2 ) and

various values of (w). The following combinations where

tested, for the case 3 configuration and the range error was

obtained in each of the combinations.

w 62

0.1 0.5
0.1 2.0

0.1 4.0

1.0 0.5
1.0 2.0 J.",
1.0 4.0

3.0 0.5

3.0 2.0

3.0 4.0

10.0 0.5
10.0 2.0

10.0 4.0

In the following Figures 5.17 to 5.28 the. filter
behavior is displayed. 'It is characteristic that the filter
tracking accuracy and quality is related to both values of

(w) and (62). For the specific configuration it came out
that if the (d2) was more than 0.5 then the filter was very
sensitive to the value of (w). The best results were

obtained with the smallest tested value of w=0.1. ,This
should be expected because in the case-that the measurement,

noise is too big and we additionally introduce uncertainty,

80



due to the target maneuver, then the filter assumes a lot of .

uncertainty and at any time behaves erratically following

the noisy received measurements. It seems that for-each

kind of target and environmental condition (i.e. measurement

noise variance) there will be an optimal (w) to account for

the target maneuvers.
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VI. CONCLUSIONS

The proposed way of solving the problem of tracking a
maneuvering target using noisy bearings-only measurements

was tested and it exhibited satisfactory behavior. The main

characteristics of it are:

1. The filter responds satisfactorily in the case
that the target maneuvers. The filter appears to be very
sensitive to the value of 02. The results were satisfactory
up to the value of 0o=0.5. After that the behavior of the

filter depends very much on the value of w. The smaller the
value of w the better the filter tracks.

"2. The design is simple and almost no extra compu-
tational power is needed beyond that of a nonmaneuvering

target filter.

3. The estimati.on is accurate for a nonmaneuvering

target as well, and it, uoes not pay the overhead of reduced
ac:uracy as the other methods do in the nonmaneuvering case.

4. Some other target-tracker configurations were
te ted which are not referenced in the previous chapters. In
so e of them ,the filter exhibited disability to track the
ta get. In those cases the characteristic event was. that the
ta get was moving in such a way that even the tracker's
ma euvers did not cause significant changes in the measured
be rings. So the tracker maneuvers are very important in the
be rings-only tracking problem. They must, be such that will
cause' changing bearing rates. Of course the, tracker's
maleuvers are-restricted by various factors-as speed capa-

bi ity, tactical situation, intentions (evade or attack),
et 4.
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Possible subjects for further investigation:

1. Analytically how does the 'filter behave in a

variety of tracker-target, w - ' configurations? Fo-:7

example, for a given value of (a2), what is the optimal (w)?

2. In the simulations the tracker was supposed to

move with a continuously changing course which is not the

real case. Also the tracker was supposed to assume huge

amounts of acceleration during its maneuvers, i.e. it was

supposed to change course and speed in one second which also

is not realistic. How does this assumption differ from the

real case?L

3. Investigate the tracker motion under realistic

constraints with the requirement of 'obtaining tactical

advantage and simultaneously providing needed bearing rate

to accurately solve the tracking problem.

4. Investigate the effect of assuzmi~ng realistic-

constraints on target motion.

In this Thesis we dealt with the problem of maneuvering

targe~t passive tracking using a simple method. The first

results are satisfactory, however the method needs further

detailed investigation for even better performance.



AFPENDIX A

SIMPLE EXAMPLE SIMULATION PROGRAM

REAL*4 P(4,4),H(2,4),HT(4.2),F(4,4),FT(4,4), -
*S7(4,4),

*G (4,2),

*FX(,4,1) ,Rl,R2,XI(4,1) ,R(2,2) ,W,FPUP(4,4) ,FPUPFT(4,4),
* *AI,A2,A3,R3

INTEGEF. N,MKK,I,J,K,L,NR,S

C
N=4

W=0.5 '
S=2

NRzl5

DO 1 I=1,N

DO I J=1,N

1 F(I,J)=O.

F(1,2)=1.l

F'(2,2)=l.

F(3,3)=i.
F(3,4)=1.

DO 2 I=1,N

DO0 J=1,N

DO 3 1=1,N

DO 3 J=1,N
3 S7(I,J)=O.

DO 4 I=1,N
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DO 4 J=1,N

4 S7(I,I)=l.

X(,1)0=1000

X(2 ,1)=O.

X(4,1)= 1600.

R(1,2)=O.

R(271)=O.

DO 5 I=1,N

DO 5- J=1,N

.3 P(IJ)=O.

* P(1,1)=1000.
P(2,2)=1000.

P(3,3)=1000.

P(4,4)=1000.

DO 6 I=1,.S

I DO 6-J=1,N
6 H(I,J)=O.

H(2,3)=1.

DO 7 I=1,S
DO 7 J=1,N

7 HT(J,I)=H(IJ)

DO 71 I=1,N

DO 71 J=1,N

71 Q(IJ)=O.

Q(3,3)=.25*W

Q(3$4)=5*W

Q(4,3) .5*W

Q(2,2)=W
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Q(4,4)=W

DO 999 KK=1,NR

-T=FLOAT (1K)

L=KK-1

TT=FLOAT(,L)

Z(1,1)=10000.*COS( *157*TT)

z(2,1)=1'0000.*SIN(.157*TT)

CALL MM(P,HT,S1,N,N,S)

CALL MM(H,S1,S2,S,N,S)

DO 8 I=1l,S

DO 8 J=1,S

18 S2(IJ)=S2(I,J)+R(I,j)
DET=S2(1,1)*S2(2,2)-S2(1,2)*S2(2,1)

S6(1,1)=S2(2,2)/DET

S6(1,2)=-S2(1,2)/DET

S6(2,1)=-S2(2,1)/DET

S6(2,2)=S2(1,1)/DET

CALL MM(S1,S6,G,N,S,S)

CALL NM(H,X,HX,S,N,M)

DO 9 I=1,S

DO 9 J=1,M
9 ZHX(I,J)=Z(I,J)-HX(I,J)

CALL NM(G,.ZHX,XI,N,S,M)

DO 10 I=1,N

DO 10 J=1,M.

10 X(I,J)=X(I,,J)+XI(I,J)'

CALL ItI(G,H,GH,N,S,N)

DO 11 I=1,N

DO 11 J=1,N'

CALL tM1(IGH9P',PUP+,N,N,N)

CALL MM(FX,XPR,N,NM)

CALL MM(F,PJP.,FPUP,N,N,N)

CALL MM(FPUP,FT,FPUPFT,N,N.,N)

DO 13 E,N
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DO 13 J=1,N

13 PPR(I J)=FPUPFT(I ,J)+Q(I,J)

WRITE(6,106)Z(1,1),Z(2,1),X(l,l),X(3,1),XPR(1,1),
*XPR (3, 1)

x(1, 1)=XPR(1,1)

X (2,1) =XPR(2, 1)

X(3 ,1)=XPR(3, 1)

X (4 , 1>XPR (4, 1)

DO 14 I=1,N

DO 14 J=1.N

14 P(I,J)=PPR(I,J)

106 FORIkT (6 (F8. 1)

999 CONTINUE

-STOP

END

SUBROUTIUE MM(A,B,C.,N1,N2 ,N3)

REAL*4 A(Nl,N2),B(N2,N3),C(N1,N3)

DO 100 I-4i.,Nl

* DO 100 Kzl,N3

C(I,K)=O.

*DO 100 J-ý1,N2

100 C(I,K)=C(I,K)+A(I,J)*B(J,K)

RETURN

END
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APPENDIX B

B.O'.T NONMANEUVERING TARGET SIMUL.ATION PROGRAM.

REAL*8 P(4,4),H(1,4),*HT(4,1),Q(4,4),AX,

*RI(1,1) ,VV(4000,'4) ,RR(4000)',S7(4,4),

*GRT(4,4) ,VXA(l,1) ,VYA(1,1)
*,V(1,400.0) ,Z(1,1) ,Y(1,l)-,S1(4,1),

*S2(l,1) ,XI(4,1) ,TT,X1,X3,El,UU,

*S6(l,1) ,GY(4,1) ,HX(l,1) ,TY,Ws
*GHX(4,1).,F(4,4),FT(4,4),XPR(4 I)p
*PPR(4 ,4),FP (4,4),GT(1i,4) ,R(1, 1')
*GH(4,4) ,IGH(4,4) ,IGHT(4,4) ,PUP(4,4),
*IGHP(4,4),IGHPT(4,4),GR(4,1)

INTEGER N,M,NN,NR,L,KK,I,J,K,NS

'C

N=4

NN~1

W=3.DO

NR= 2000
* NS=.4000

* SB=.lDO/57..295779DO

SX=5O. DO,

SY=5O. DO

SVX=1. DO

SVY 1'. DO

DS=2.11133.DO

DS1 =333333 .DO

HHH0O.DO

DO 1 J=1,N
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DO 1 I=1,N

Q (I ,J)=0.DO
1 F(IJ)=O.DO

F (1,2 )=1 DO

F(1,2)=l.DO

F(3,3)=1.DO

F(4,4)=1.DO

DO 2 I=1,N

DO 2,J=1,N

2 FT(I,J)=F(J,I)

C.

C GENERATION AND STORAGE OFF I.C.NOISE

DO 10 I=1,N

CALL GGNIIL (DS,NS,RR)

DO 10 J=1,NN

10 VV(J,I)=RR(J)

C

C MAKE-MATRIX S7=IDENTITY.

DO 11 I=1,N

DO 11'J=1,N

11 S7(I,J)=O.DO

DO 12 I=1,N

12 S7(I,I)=l.DO

C

'C START'THEFIRST RUNINITIAL STATE VALUE.

DO 99 JJ=1,NN

X(1,1)=-4000. DO

X(2,1):;+12.DO

X(4,1)=5OO.DO

C

C DEFINE R AND RI MATRICES.

R.(1, 1)=SB**2
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RI11 lD/Rll

C INITIALIZE ? MATRIX

DO 13 I=1,N

DO 13 J=1,N

13 P(I,J)=O.DO

P(1,1)=SX**2

P(2,2)=SVX**2

P(3 ,3)=SY**2

P(4,4)=SVY**2

C GENERATION OFF MEASUREMENT NOISE -STORAGE.

DO 14 I=1,M

CALL G-jNhL(DS1,NS,RR)

DO 14 J=1,NR

14 V(I,J)=RR(J)

C

C TTME EVOLUTION

C

DO 999 KK=1,NR
T=DFLOAT (KK)

L=KK-1

TT=DFLOAT CL)

C GENERATION OFF MEASUREMENT DATA

Xl:-500O.DO+10.DO*TT

X3=8000.D0.200O.DO*DCOS(O.O35 DO*TT)

UU=Xl / X3

Z (1, 1)=~DATAN2 (Xi,X3 )
C ADD NOISE

C PROJECTION OF X: XPR =X(K+1/K) F *X(K/K). D*U

CALL MM(1F,X,XPR,N,N,M)

C

AX0O.DO

VY=-7O .DO*DSIN(O.035D0*(TT+O.DO))

* AY=-2.45 DO*DCOS(O.035D0*TT,)
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D(1, 1) =0DO

D (2, 1)=0. DO

D 3, 1) =AY/ 2.O0 DO

D(4, 1)=AY

C

DO 77 I=1,N

DO 77 J=1,M

.77 XPR(I.J)=XPR(I,J)+D(I.,J)

C

*C PROJECTION OF P PPR,=.P(K+1/K) F *P(K/K) * ýT Q
CALL MM(F,P,FP,N,N,N)

CALL MM(FP,FT,1PPR,N,N,N)

DO 718 I=1,N

DO 78 J=1,N

78 PýPR(I',J)=PPR(I,J )+Q(If,J)

X(1,1)=XPR(1,1)'ý

X(2,1)=XPR(2,1)

X(4,1)=XPR(4,1)

C

DO 68 I=1,N

DO 68 J=1,N

'68 P(I,J)=PPR(I,J)

C H- MATRIX

U=X( 1, 1.) **2+X(3, 1.)*

H(1,1)=X(3,1)/U

H('1,2)=O.DO

H(1,3)=-X(1,1)/U-

H(1,4):;O.DO,

C H- TRANSPOSE MATRIX

HT( 1, 1)=H(l, 1)

HT(3,1)=H(1,3)

HT(4,1.)=H(1,4')

C MEASUREMENT UPDATING



C COMPUTATION OF GAIN MATRIX G=P*HT/(H*P*HT+R)

CALL MM(P,HT,'S1,N,N,M)

CALL MM(H,S1,S2,M,N1,M)

DO 23 I=].,M

DO 23 J=1,M

23 S2(I,j)=S2(I,J)+Pk(I,J)

S6(1, 1)=1.DO/S2(l,l)

CALL MM(S1,S6,G.,N,M,m)

C

GT ( 1, 1) =G(.1 1),

GT(1,2)=G(3,1)

GT (1, 4)=G(41),
C ERORCOARINCEMARIXUPDTE

C P(K.1/K'-1) =(I-G*H1*P(K+1/K)

CALL MM(G,H,GH,N,M,N)

DO 73 I=1,N

DO 73 J=1,N

73 IGH(I,J)=S7(I,J)-GH(I,J)

CALL MM(IGH,j',IGHP,N,N,N)

DO 75 1=1,N

DO 75 3=1,N

75 PUPk(I,j)=IGHP'(I,J)

DO 76I1=11N

DO 76 J=1,N

76 P(I.,J)=PUP(I.,J) t

C STATE UPDATE AT MEA-SUREMENT

C X(+)=," -)+G*(Y-I{(X(-.))) !?BUT FOR E.K.F.

CALL MM(H,X,HX,M,N,M)

HH(., 1)=Y(l,l)-DATAN2(X(l,1) ,X(3,1))

CALL MM(G,HH,XI,N,M,M)

DO 80 I=1,N

DO 80 J=1,M..

80 X (I, J) =j(I, J)+XI (I, J)

-El=DSQRT((Xl-X(l,l),)**2+(X3:-X(3.,l))**2)

104



E2= (Xl-X(1Jl))

E3=(X3-X(3 ,1))

TY=X(4, 1)-VY-AY

WRITE (6,107)T,E2,E3,EI,X(2,1),TY

107 FORMAT(6(3X(FI4.4)))
999 CONTINU

999 CONTINUE

STOP

END

CCCCCCCCCCCCCCCCCCCCCC~cccccccccccccccccccccccc

SUBROUTINE MM(A,B,C,NlN2,N3)

REAL*3 A(Nl9N2),B(N2,N3),C(N1,N3)

DO 100 I=1,N1 l

DO iCO K=1,N3

C (I, K) =0.DO

DO 100 J=1,N2

100 C(I,K)=C(I,K).A(IJ)*B(J,K)

RETURN
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APPENDIX C

B.O.T MANEUVERING TARGET SIMULATION PROGRAM.

C

REAL*8 P(4,4),H(1,4),HT(4,1'),Q(4,4),AX,AYi,
*D(4, 1) ,XA(1,1) ,YA(1, .) ,RI(l,1),,VV(4000,4),

'*V(1,4OOO) ,Z(1, 1) ,Y'(1,1) ,S1(4,1) ,S2(11l),

*XI(4,1l),TT,Xl,X3,E1,UU,HH(l,1) ,JI(4,1) ,X(4,i-.)I

*GHXj(4,1) ,F(4,4) ,FT(4,4) ,XPR(4, 1) ,PPR(4,4),,

*FP(4,4),GT(1,4),R(1,1) ,GH(4,4),IGH(4,,4),

*IGHTC4,4),PUP(4,4),IGHP(4,4),IGHPT(4,4),GR(4,1) L
INTECER N,MIINN,NR,L,KK,I,J,K,NS,H*LHHH)HH

*N=4

M=l

NN=l

CCcCCccccCCcc~c~cCc
W=1.DO

NR=2000.

NS=4000

cCCCcCcCCCCcccc~c
SB=.lDO/57.295 79D0

ccCCcCcccccCCCCCC~
SX=50. DO'

SY=50. DO

SVX~l. DO

SVY1l. DO
DS=211133.DO.
DS1=333333 .bO

HHH=O.DO
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DO 1 J=1,N

DO 1 I=1,N

1, (1) =01. DO

F (1,2) =1.DC

F(2,2)=l.DO

F(3,3)=1..DO

F(3,4)=1.DO

F(4,4)=1.DO

DO 2 I=1,N

DO 2 J=1,N

2 FT(I,J)=F(J,T)

C.

C GENERATION AND STORAGE OFF I.C.NOISE

DO 10 I=1,N

CALL PGNh"L (DS,NS,RR)

DO 10 J=]..NN
1.0 VV(J,I)=RR(J)

C MAKE MATRIX S7=IDENTITY.

DO 11 1=1,N,

DC 11 J=1,N

11 S7(I,J):;O.DO

DO 12 311,1!

12 S7(I,I) I.DO

C START THE FIRST RUN,INITIAL STATE VALUE.

DO 99 JJ=1,NN

X(1,1)=-4006. DO

X(2, 1)=12.DO

X(3,1)=5000.DO

X (4,1) =2. DO

C DEFINE R AND RI MATRICES.

R( i,1)=SB**2

R'4(1,1)=l.DO/R(l, 1)
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C INITIALIZE P MATRIX

DO 13 I=1,N

DO 13 J,

13 P(.I,J)=O.DO

P(1, 1)=SX*.*2

P(2,2)=SV*X**2

P(3,3):SY**2

P(4,4)=SVY**2

C GENERATION OFF MEASURMENT NOISE -STORAGE.

DO 14 I=1,M

CALL GGNMIL(DS1,NS,RR)

DO 14 J=1,NR

14 V(I,J)=RR(J) I
C TIME EVOLUTION

DO 999 KK=1,NR

T=DFLOAT (KK)

L=KK-1

TT=DFLOAT(L)

C GENERATION OFF MEASURMENT DATA

X1=-50OO.DO+10.DO*TT

X3=8OOO.DO+20OO.DO*DC08(0.O35 DO*TT)+2000.DO

IF (KK.LT.700) GOTO 33

X1=-1OO.DO+3.DO*Tl

X3=8000.DO+2000,.DO*DCOS(O.035 D0*TTl-1O.DO*-TTI.9OO.D0-

IF (KK.LT.1400.AND..KK.GE.7OO0) GO TO 33

X1=46100.DO-30.DO*TT-6500.DO+650O.DO,

X3=80OO.DO.2OOO.DO*DCOS(O.035-DO*TT)+7OOO.,DO-.12OOO.DO

.33 -CONTINUE

Z(1,1)=DATAN2(X1,X3)

C ADD NOISE

C PROJECTION OF X: XP.R =X(K'1/K) F *X(K/K)e D*U

CALL MM(FX,XPR,N,N,M) 1

AX=O.DO

VY=-70.DO*DSIN(O.035DO*(TT.O.DO)),
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AY=-2.45 DO*DCOS(O.035D0*TT)

D(1, 1) =0DO

D(2,1)=O.DO

D(:3,1)=AY/2.O DO

D(4,1)=AY

C

DO 77 I=1,N.

DO 77 J=1,M

77 XPR(I,J)=XPR(I..J)+D(I,J)

C PROJECTION OF P :PPR = P(K+1/K) =F *P(K(/K) '*'FT +

CALL NM(F,P,FP,N,N,N)

CALL MM(FPFT,PPR,N,N,N)

IF (KK.LT.600.) GO TO 86

IF (KK.GT.600.AND.HHHHH.LT.1.) GO TO 62-

IF (KK.GT.600.AND.HMMH.GT.1.) GO TO 67

66 DO 79 I=1,N

* DO 79 J=1,N

79 Q(I,J)-O.DO

GO TO 86

67 Q(1,1)=.25 DO*W

Q(1,2,)=.5 DO*W

Q(2.,1)=.5 DONW

Q (2 ,2) =W

'Q(3,3)=.25 DO*W

Q(1,4)=.5 DO*W

Q(4,3)=.5 DO*W

Q(4,4)=W

86 CONTINUE

DO 78 I=1,N

DO078 J=1,N

78 PPR(I,J)=PPR(I,J)+Q(I,J)

X(21.1) =XPR(1, 1)

X(3,1)=XPR(3,1,)

X(4,1)=XPR(4 1)
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pc

DO 68 I=1,N

DO 68 J=1,N

68 P(I,J)=PPR(I,J)

H- MATRIX

U=X(1, 1)**2-X(3 ,1)**2H*,)X31/
H(1,2)=O.DO

.H(1,4)=O.DO

C H- TRANSPOSEMATRIX

HT (2,1)=H( 1,2)

HT(3,1)=H(1,3)

HT (4,1)=H(1, 4)

C UPDATING AT MEASUREMENT

VC COMPUTATTON OF GAIN MATRIX G=P*HT/(H*P*HT+R)r CALL MM(P,HT,S1,N,N,M)
CALL MM(H,S1,S2,UI!,N,M)

DO 23 1=1,M

* fDO 23 J=1,M

23 S2(I,J)=S2(I,J)+R(I,J)

S6(1,1)=1.DO/S2(11l)

CALL MM(S1,S6,G,N,M,M)

GT(1,J.)=G(l,l)

GT(1,3)=G(2,1)

GT (1,4)=G(4,1)
C, ERROR COVARIANCE MATRIX UPDATE:P(K+1/K+i)'

(I-G*H1*P(K+1/K)( }

CALL MM(G,H,GH,N,M,N)

DO 73 I=1,N

DO 73 J=1,N

CALL Mt1(IGH,P,IGHP,N,N,N)
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DO 75 I=1,N

DO 75 J=1bN

I75 PUP(I,J)=IGHP(I,J)
DO 76 I=1,N

* DO 76 J=1,N

76 P(I,J)=PUP(I,J')

C STATE UPDATE AT MEASURNENT

(j X(+):;X(-)+G*(Y-H(X(-))) !!BUT FOR E.K.F.

CALL MII(H,X,HX,M,NM)

HH(1,1)=Y(1,1)-DATAN2(X(1,l) ,X(3,1))

HHH=HH(1, 1)*150.DO

HHHH~= SNGL (HHH)

HHHHH=IABS(HHHH)

CALL MM(G,HH,XI,N,M,M)

DO 80 I=1,N

DO 80 J=1,M

*80 X(I,J)=X(I,,J)+XI(I,J)

E1=DSQRT( (X1-X(1, 1) )**2.4.(X3-X(3 ,1) )**2)

1 . E2=(X1-X(l,1))

E3= (X3-X(3, 1))

TY=X(4, 1)-VY

TX=X(2, 1)+!0.DO

I C .WRITE (6,107)TE2,E3,E1,X(2,1),X(4,1)
C WRITE (6,107)T,X1,X3

* * WRITE (6,107)T,TX,TYHH(1,1)

* 107 FORMAT(6(3X(Fl4.4)))

*999 CONTINUE

99. CONTINUE

* STOP?

END

U CCCCCCCCCCCCCCCCCCCCCCCCCCCCCtCCCCCCCCCCCCCCCC

* - SUBROUTINE MM(A,B,C,N1,N2,N3)

*REAL*8 A(Nl,N2),B(N2,N3),C(Nl,N3).
*DO 100 I=1,Nl

DO 100, K=,l,N3



C (I ,K)=0.DO

DO 100 J=1,N2

100 C(I,K)=C(I,k)+A(I,J).*B(J,K)

RETURN

END

END



APPENDIX D

PSEUDO-LINEAR FORMULATION

If we will start we the Cartesian formulation equations:

h(k) h•x(k)] n'(k) (D.i)

h[x(k)] = atctanx.L(k)/x,(k)] (D.2)

E [n(k)J= 0 (D.3)

E [n(i)n(j)j = (D.4)

then after aigebraical manipulations yield:

A

0 = H(k)x(k) + R(k)n(k) (D.5)

where:

A

H(k) = Lcosb(k), -sin4(k), 0, 0] (D.6)

R(k)eyxtZ(k) ÷ x 3
2 (k) (D.7)

The nonlinearity has been embeded in the measurement noise.

If

e(k)=R(k)n(k)=effective measurement noise at tims.
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it can been shown [Ref. 13]. that a('k) has the following

statistics:

E IE(k)] 0 (D.99)

E (e 2 (k)] = R2 (k) 2 (k) (D.10)

Finally the pseudo-linear model is analogous to that of

Cartesian formulation model with, the following modifica-

tions:

1. replacing H(k) with that given by equation (C.G)
2. replacing o (k) with R(k/k-l)6(k)

A
3. replacing f(k)-h~x(k/k-l)] with -H(k)x(k/k-l)

Detailed analysis on the, subject can be found in
[Ref. 8].
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